
Draft v3, under peer review (February 2016)

Draf
t v

3

Blockstack: Design and Implementation of a Global Naming System
with Blockchains

Muneeb Ali?†, Jude Nelson?†, Ryan Shea†, Michael J. Freedman?
?Princeton University, †Onename

Abstract
Cryptocurrency blockchains like Bitcoin and Name-

coin and their respective P2P networks have seen signifi-
cant adoption in the past few years, and show promise as
naming systems with no trusted parties. Users can reg-
ister human-readable names and securely associate data
with them; only the owner of a particular private-key can
write or update the name/value pair. In theory, many de-
centralized systems can be built using these cryptocur-
rency networks, such as new, decentralized versions of
DNS or PKI. As the technology is relatively new and
evolving rapidly, however, little production data or ex-
perience is available to guide design tradeoffs.

In this paper, we describe our experience operating a
large, real-world deployment of a decentralized PKI ser-
vice built on top of the Namecoin blockchain. We present
various challenges (network reliability, throughput, se-
curity issues) that we needed to overcome while reg-
istering/updating over 33,000 entries on the blockchain
which involved over 200,000 transactions on the Name-
coin network. Further, we discuss how our experience
informed the design of a new blockchain-based naming
system, Blockstack. We detail why we changed from
Namecoin to the Bitcoin network for the new system, as
well as operational lessons from this migration. Block-
stack is released as open source and currently powers a
production PKI system for 40,000 users.

1 Introduction

Cryptocurrency blockchains and their respective P2P
networks are useful beyond exchanging money. They
provide cryptographically auditable, append-only
ledgers that are already being used to build new,
decentralized versions of DNS [37] and public-key
infrastructure (PKI) [39], along with other applications
like file storage [21] and document timestamping [18].
Because blockchains have no central points of trust

or failure, they enable a new class of decentralized
applications and services that minimize the degree to
which users need to put complete trust in a single party,
like a DNS root server or a root certificate authority.

Blockchain networks have attracted a lot of interest
from enthusiasts, engineers, and investors; 955 million
USD has been invested in blockchain startups in the last
3 years [17]. With the rapid capital infusion, infrastruc-
ture for blockchains is getting quickly deployed [16] and
blockchains are emerging as publicly-available common
infrastructure for building decentralized systems and ap-
plications. However, blockchain networks are at a very
early stage and there is very little production data avail-
able to guide design trade-offs.

Many non-financial applications of blockchains imply
the need for a naming system that securely binds names,
which can be human-readable, to arbitrary values. The
blockchain gives consensus on the global state of the
naming system and provides an append-only global log
for state changes. Writes to name/value pairs can only be
announced in new blocks, as appends to the global log.
The global log is logically centralized (all nodes on the
network see the same state), but organizationally decen-
tralized (no central party controls the log).

The decentralized nature of blockchain-based naming
introduces meaningful security benefits, but certain as-
pects of contemporary blockchains present technical lim-
itations. Individual blockchain records are typically on
the order of kilobytes [45] and cannot hold much data.
Latency of creating/updating records is capped by the
blockchain’s write propagation and leader election proto-
col, and it is typically on the order of 10-40 minutes [13].
The total new operations in each round are limited by
average bandwidth of nodes participating in leader elec-
tion (for Bitcoin the current bandwidth per new round is
1MB). Further, new nodes need to independently audit
the global log from the beginning, which implies that as
the system makes forward progress, the time to bootstrap
new nodes increases linearly.



We believe that in spite of these scalability and per-
formance challenges, blockchains provide important in-
frastructure for building secure, decentralized services.
The cost of tampering with blockchains grows with their
adoption; today, it would require hundreds of millions of
dollars to attack a large blockchain like Bitcoin [1].

These benefits motivated us to use blockchains to build
a new decentralized PKI system. Our system enables
users to register unique, human-readable usernames and
associate public-keys, like PGP [49], along with addi-
tional data to these usernames. There is no need for any
central or trusted party in our PKI system. This paper
presents our experiences from operating this PKI system
on the Namecoin network, which is one of the largest
services built on top of a blockchain to date. We out-
line the challenges that we had to overcome for regis-
tering/updating over 33,000 user entries and for sending
over 200,000 transactions on the Namecoin network.

Our production deployment led to many interesting
experiences where we observed and analyzed network
anomalies and security problems that were not discov-
ered or documented before. We discovered a critical
security problem where a single miner consistently
had more than 51% relative compute power, called
mining power, on Namecoin (see [32] for details on the
51% attack and mining power). A 51% attack is one of
the most serious attacks on a blockchain and impacts the
security and decentralization properties.

Moreover, we also encountered chronic networking
issues with broadcasting transactions on the Namecoin
network. Reliability of the network generally depends
on how actively a blockchain network is monitored and
maintained, as well as financial incentive for operating
the network. Therefore, for both security and reliability
reasons, blockchain-based services should use the largest
and most-secure blockchain, which is currently Bitcoin.

Our experience with Namecoin informed the design
and implementation of a new blockchain-based nam-
ing system, called Blockstack, that uses the Bitcoin
blockchain. Unlike previous blockchain-based systems,
Blockstack separates its control- and data-plane consid-
erations: it keeps only minimal metadata (namely, data
hashes and state transitions) in the blockchain and uses
external datastores for actual bulk storage. Blockstack
enables fast bootstrapping of new nodes by using check-
pointing and skip lists to limit the set of blocks that a new
node must audit to get started. We have released Block-
stack as open source [12].

2 Motivation and Background

In this section, we describe the motivation for building
naming systems that have no central point of trust and
provide the relevant background on blockchains. In this

paper, we use the term naming system to mean a) names
are human-readable and can be picked by humans, b)
name/value pairs have strong sense of ownership—that
is, they can be owned by cryptographic keypairs, and
c) there is no central trusted party or point of fail-
ure. Building a naming system with these three prop-
erties was considered impossible according to Zooko’s
Triangle [30] and most naming systems provide two
out of these three properties [29]. Namecoin [37] used
a blockchain-based approach to provide the first nam-
ing system that offered all three properties: human-
readability, strong ownership, and decentralization.

2.1 Background on Blockchains
Blockchains provide a global append-only log that is
publicly writeable. Writes to the global log, called trans-
actions, are organized as blocks and each block packages
multiple transactions into a single atomic write. Writ-
ing to the global log requires a payment in the form of
a transaction fee. Nodes participating in a blockchain
network follow a leader-election protocol for deciding
which node gets to write the next block and collect the
respective transaction fees. Not all nodes in the network
participate in leader election. Nodes actively competing
to become the leader of the next round are called miners.
At the start of each round, all miners start working on a
new computation problem, derived from the last block,
and the miner that is the first to solve the problem gets
to write the next block. In Bitcoin, the difficulty of these
computation problems is automatically adjusted by the
protocol to get 1 new block roughly every 10 minutes.
See [13] for further details on how blockchains work.

2.2 Namecoin’s Naming System
Namecoin is one of the first forks of Bitcoin and is the
oldest blockchain other than Bitcoin that is still opera-
tional, with a current market cap of 5 million USD [5]
(the market cap of a cryptocurrency is the exchange-
traded value of its coins multiplied by its number of coins
in existence). The main motivation for starting Name-
coin was to create an alternate DNS-like system that re-
places DNS root servers with a blockchain for storing
information on registered domain names [37]. Given
that blockchains don’t have central points of trust, a
blockchain-based DNS is much harder to censor and reg-
istered names cannot be seized from owners without get-
ting access to their respective private keys [29] Altering
name registrations stored in a blockchain requires pro-
hibitively high computing resources because re-writing
blockchain data requires proof-of-work [7].

Namecoin is derived from Bitcoin’s code, and keeps
most functionality identical to Bitcoin, with the excep-



tion of support for registering name/value pairs. Our
work on Blockstack implements name registration
functionality as a separate layer on top of Bitcoin, but
this design was non-obvious before our work. Indeed,
it was common practice to start alternate blockchains by
forking them from Bitcoin and make modifications re-
quired by the respective service/application, the precise
approach taken by Namecoin.

Just like DNS, there is a cost associated with register-
ing a new name. The name registration fee discourages
people from grabbing a lot of names that they don’t in-
tend to actually use. In Namecoin, the recipient of reg-
istration fees is a “black hole” cryptocurrency address
from which money cannot be retrieved [29]. Namecoin
defines a pricing function for how cost of name regis-
trations change over time. Namecoin supports multiple
namespaces (like TLDs in DNS), and the same rules for
pricing and name expiration apply to all namespaces. By
convention, the d/ namespace is used for domain names.
For example, to register the domain yahoo on Namecoin,
one must register the name d/yahoo and then put the IP
address of the Yahoo! website in the name/value pair.

In Namecoin, name registration is a two-step process.
A user first pre-orders a name in a new transaction that
includes hash(name) in the transaction. This does not
reveal what name she is trying to register. After the pre-
order transaction has been confirmed by the network—
i.e., enough blocks (typically 10) are later added to the
blockchain to make it computationally infeasible for any
miner to re-write recent blockchain history and reverse
the transaction—the user can reveal the name she was
actually trying to register. This is done by sending a sec-
ond transaction on the network that completes the regis-
ter step. The user includes the value of the name/value
pair in the second transaction as well. The cryptocur-
rency address that signed the two transactions becomes
the owner of the newly registered name/value pair.

Name registrations expire after a fixed amount of time,
measured in new blocks written (currently 36,000 blocks,
which translates to roughly 8 months). Namecoin also
supports updating the value associated with a name, as
well as ownership transfers.

2.3 Blockchain-based PKI system

We used Namecoin to build a PKI system, called
Blockchain IDs, by starting a new namespace u/ on
it. We defined the format for publishing public-keys,
like PGP [49], along with other profile data in the
blockchain [2]. This is similar to the format of DNS
records. We launched a web service [39] in March 2014
that enabled people to easily register names on the u/
namespace of Namecoin and associate profile data with
them. In our web service, we first register the name on

the user’s behalf (and also cover the cost of name reg-
istration for them) and then transfer the name to a cryp-
tocurrency address owned by the user. Our implemen-
tation is the first PKI system that binds user identities
to public-keys using a blockchain. All registered names
have a ECDSA public-key [26] binding by default, and a
subset of users added their PGP keys as well. More than
33,000 users registered on the Namecoin blockchain be-
tween March 2014 and August 2015 through our service.
According to a study by Harry et al. [29], our system is
the second largest namespace on Namecoin by volume
and the largest by number of active users.

3 Lessons from Namecoin Deployment

In this section, we describe our experience with running
a year-long production system on Namecoin, the chal-
lenges we faced, and lessons we learned.

3.1 Security
The security of name ownership is tied to the security of
both the underlying blockchain and the software power-
ing it. There are three security issues to consider:

1) Cost of Attack: Miners often pool their resources
to form a mining pool, which is essentially a super node
on the network (a lot of computational power behind
a single miner node). If the amount of computational
power under the control of a single miner (or pool) is
more than the rest of the network, called a 51% attack,
then that miner has the ability to attack the network
and rewrite recent blockchain history, censor transac-
tions (e.g., for name registrations), and steal cryptocur-
rency using double spend attacks [45]. This is because
it will win the leader election majority of the time, and
produce a blockchain history with more proof-of-work
than any disagreeing miner. The more expensive it is to
control a majority of the compute power on a particular
blockchain, the more secure the blockchain.

We noticed in late 2014 that a single mining pool con-
sistently had more than 51% of the compute power on
Namecoin. Recently, the situation has been even worse,
with a single mining pool controlling over 60% of Name-
coin’s compute power. Figure 1 shows the monthly,
weekly, and daily distribution of mining power for the
month of August 2015, right before we migrated our sys-
tem away from Namecoin. In fact, we have observed
F2Pool (also known as Discus Fish) control up to 75%
compute power in a particular week. At such concentra-
tion, Namecoin is effectively controlled by a single party;
F2Pool gets to write most of the new blocks and can un-
dermine the security of the blockchain at will.

2) Software Vulnerabilities: Raw hashing power is
not the only metric for the security of a blockchain.
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Figure 1: Mining Distribution (Aug 2015, the month before our migration away from Namecoin)

Software issues/bugs are also very important, e.g., a
Namecoin bug allowed people to steal names from any-
one [24]. Actively developed codebases with frequent
security reviews lower the rate of critical bugs in pro-
duction. Despite originally sharing the same codebase
as Bitcoin, Namecoin was not kept up-to-date with ad-
vancements made in Bitcoin development.

3) DDoS Attacks: One of the less explored secu-
rity issue with cryptocurrency blockchains is network at-
tacks, e.g., DDoS attack on core discovery nodes, mining
pools [34], or the entire network. The more peers a cryp-
tocurrency network has, the more resilient the network
is to denial-of-service attacks. As a relatively small net-
work, Namecoin has many fewer nodes than Bitcoin (170
vs. 4,600 in Jan 2016 [3]), which makes it more vulnera-
ble in this respect.

When considering security on these three metrics,
the Bitcoin blockchain is currently by far the most se-
cure blockchain. We faced a fundamental tradeoff
between security and introducing new functionality
to blockchains. Starting a new blockchain network is
how developers introduce new functionality not provided
by Bitcoin e.g., a naming system that is of interest to
many emerging applications. However, new blockchains
are significantly less secure than Bitcoin. In Section 4,
we introduce Blockstack to show how to overcome this
tradeoff by creating virtual chains to introduce new func-
tionality as a layer on top of Bitcoin.

3.2 Network Reliability and Throughput
The throughput of our PKI system (number of entries we
can register/update) is directly dependent on the through-
put of the underlying blockchain. The number of new
register/update operations that can be performed per hour
is limited by the number of transactions that can be sent

(and confirmed) on the underlying blockchain per hour.
Similarly, reliability of our PKI system is impacted if
the underlying blockchain cannot perform operations re-
liably and consistently.

Network Latency Spike: As a fork of Bitcoin, Name-
coin shares many protocol properties with Bitcoin, in-
cluding a 10 minute target of writing new blocks (latency
target) and a 1MB bandwidth limit on block size (giving
throughput of∼1000 transactions per block). Figure 2(a)
shows that since we launched our PKI system in March
2014, Namecoin on average performed well on the net-
work latency target. As expected, most new blocks were
written within 10 and 40 minutes (similar times have also
been observed on Bitcoin [13]). Figure 2(b) shows an
incident in late August 2014 (at block number 192000),
where network latency skyrocketed for a couple of weeks
(∼1000 blocks are roughly a week). After investigating
the issue and having discussions with Namecoin devel-
opers, we discovered that the latency spike was caused
by software issues in Namecoin. Someone on the net-
work was sending transactions with a large number of
data fields per transaction. This was causing severe per-
formance problems for the miners and their Namecoin
daemons kept crashing. Without stable miner nodes there
is no one there to package blocks, and hence the longer
delay in new blocks. This shows that unexpected pro-
tocol/software issues can trigger network latency prob-
lems. During this period, we noticed a slow down in rate
of new registrations of our PKI system along with a spike
in user complaints and support requests.

Network Throughput Drop: In early September
2014, right after the latency spike incident we noticed
that our transactions were not getting accepted for many
consecutive blocks and, after a while, will get accepted
in bulk in a single block that packaged a lot of transac-



(a) CCDF of network latency (03/14 – 04/15) (b) Network latency per new block (03/14 – 04/15)

Figure 2: Network Latency

tions. We noticed that a lot of new blocks had no trans-
actions in them. This issue persisted for over a week and
Figure 3 plots the number of transactions that we were
trying to send (shown as “tx target”) vs. the number of
transactions that were getting accepted by the network.
Network latency was completely normal (shown at top
of Figure 3), but network throughput went down because
of no transactions in new blocks. We tried upgrading our
software and rebroadcasting transactions, but the issue
persisted. We concluded that there is a large mining pool
that is either intentionally refusing or is unable to pack-
age transactions in the blocks it is writing. Our transac-
tions will get packaged only when some other miner was
elected to write the new block. We discuss this issue in
more detail in the next section.

3.3 Potential Selfish Mining

The signs that we noticed in the incident where miners
were not accepting our transactions (Section 3.2) looked
similar to a selfish mining attack [20]. In a selfish min-
ing attack, a) a miner needs to have a large amount of
mining power (more than 33%), b) people would notice
long delay in blocks followed by blocks in very quick
succession, and c) there will be a lot of rejected blocks.
We noticed all these signs, and believe that the unusu-
ally high computing power of a single miner was re-
sulting in conditions similar to selfish mining i.e., the
miner was able to work on new blocks faster than oth-
ers and announce them in rapid succession. This is the
first time that data collected from a production network
shows signs of selfish-mining like behavior, regardless
of if the miner was intentionally attacking the network or
not.

3.4 Software Upgrades of Nodes
For updates to name pricing or other major changes,
Namecoin requires a “hard fork” in which everyone on
the network must upgrade their software, and nodes
on previous versions can no longer participate in the
blockchain network. Anecdotal evidence suggests that
it’s hard to get miners to upgrade their software because
they don’t have enough incentive to spend engineering
hours on maintaining a small cryptocurrency like Name-
coin, which is not their main reason for operating a min-
ing pool. Our experience monitoring the Namecoin net-
work showed that whenever software updates were is-
sued on Namecoin, there was a considerable fluctuation
of computing power. In fact, we noticed that after the
recent upgrade to Namecoin Core [38], a major upgrade
to the Namecoin daemon, many miners dropped out and
never came back online.

We learned two operational lessons about software up-
grades to cryptocurrency networks: a) we should sepa-
rate consensus breaking upgrades from other upgrades
as a software engineering rule (Bitcoin recently started
doing this more cleanly in their codebase [10]) and b)
miners have incentives to minimize their cost (engi-
neering time) of software upgrades. This resistance to
upgrades is present in Bitcoin as well, but is exaggerated
for the “long tail” of smaller crypto-currencies. In Sec-
tion 4 we describe how Blockstack accounts for these in-
centives and enables the ability to introduce new features
without requiring miners to upgrade software.

3.5 Failure of Merged Mining
Security of a blockchain depends on relative compute
power that miners have and how much would it cost a
single party to get more computing power than the rest
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actions we were trying to send

of the network. New, smaller blockchains have a boot-
strapping problem where in the initial days of a new
blockchain it would be relatively easy for a single party
to take it over, since the total compute power on the
blockchain is not yet large enough to prevent this. To
address this problem Satoshi Nakamoto, author of Bit-
coin, introduced “merged mining” [35] where an alter-
nate blockchain can allow Bitcoin miners to participate
in the new network without requiring them to spend ex-
tra compute cycles. The miners can make extra prof-
its on the new blockchain without adding computational
overhead. With a merge-mined cryptocurrency the secu-
rity of the blockchain is typically a subset of the “main
blockchain”, because in practice not all miners of the
main blockchain go through the trouble of setting up
merged mining.

Namecoin switched to merged mining with Bitcoin
to increase security of the blockchain [29]. Name-
coin is the oldest and largest merged-mined cryptocur-
rency and inspired other cryptocurrencies to consider it
as well. One of our key findings is that merged min-
ing is currently failing in practice: the leading merged-
mined blockchain, Namecoin, is vulnerable to the 51%
attack (Section 3.1). Moreover, merged-mining provided
a false sense of security to the Namecoin community. If
Namecoin shares compute power of Bitcoin, that might
be a high compute power in absolute terms but a sin-
gle miner can still have more than 51% compute power
on the merged-mined blockchain. The security of the
blockchain depends on relative compute power and not
on absolute compute power. F2pool, for example, had
30-35% compute power of Bitcoin, when it had more
than 60% compute power of Namecoin. Unless the
merged mined cryptocurrency can consistently get a very
high ratio of main blockchain miners to support their

software, merged mining will not keep it safe from 51%
attacks.

The merged mining failure of Namecoin convinced us
that we’re at a stage in the evolution of blockchains
where there is not yet enough compute cycles
dedicated to mining to support multiple secure
blockchains. The respective financial capital attached to
blockchains relative to Bitcoin supports this argument:
Bitcoin has a 5.9 billion USD market cap, which ac-
counts for 89% of the market cap of all 500+ blockchains
combined, while the 2nd and 3rd largest market caps are
3.2% and 2.6% of Bitcoin respectively [5]. It’s possible
that after some years or decades we might have multi-
ple secure blockchains, but in the near-future Bitcoin’s
blockchain is the only one that is prohibitively expensive
to attack.

3.6 Summary
Namecoin deserves full credit for originally solving
naming on a blockchain. But after considering all of
the above factors, it was an easy decision to move our
PKI system from Namecoin to Bitcoin. In general, af-
ter our experience with running the production network,
we strongly believe that decentralized applications and
services need to be on the largest, most secure, and
most actively maintained blockchain. Currently, no other
blockchain even comes close to Bitcoin in terms of these
security requirements.

4 Design of Blockstack

Blockstack is designed to implement a naming sys-
tem with human-readable names in a layer above the
blockchain. In this section, we describe how Blockstack
uses the underlying blockchain, and present how it copes
with technical limitations of contemporary blockchains.

4.1 Challenges
Building systems with blockchains presents challenges:
• Limits on Data Storage: Individual blockchain

records are typically on the order of kilobytes [45] and
cannot hold much data. Moreover, the blockchain’s log
structure implies that all state changes are recorded in the
blockchain. All nodes participating in the network need
to maintain a full copy of the blockchain, limiting the to-
tal size of blockchains to what current commodity hard-
ware can support. As of January 2016, Bitcoin nodes
need to dedicate 53GB total disk space to blockchain
data for staying synchronized with the network.
• Slow Writes: The transaction processing rate is

capped by the blockchain’s write propagation and leader-
election protocol, and it is pegged to the rate at which



Figure 4: Overview of Blockstack’s architecture. Blockchain records give (name, hash) mappings. Hashes are looked
up in routing layer to discover routes to data. Data, signed by name owner’s public-key, is stored in cloud storage.

new blocks are announced by leader nodes (called min-
ers in blockchain networks [13]). New transactions can
take several minutes to a few hours to be accepted.
• Limited Bandwidth: The total number of transac-

tions per block is limited by the block size of blockchains.
To maintain fairness and to give all nodes a chance to be-
come leader in the next round, it’s required that all nodes
receive a newly announced block at roughly the same
time. Therefore, the block size is typically limited by
average uplink bandwidth of nodes in the network [13].
For Bitcoin the current bandwidth is 1MB (∼1000 trans-
actions) per new block.
• Endless Ledger: Integrity of blockchains depends

on the ability for anyone to audit them back to the first
block. As the system makes forward progress and is-
sues new blocks, the cost of this auditing grows lin-
early with time and booting up new nodes becomes pro-
gressively more time consuming. We call this the end-
less ledger problem. Bitcoin’s blockchain currently has
∼395,000 blocks and new nodes take 1-3 days to down-
load blockchain from Bitcoin peers, verify it, and bootup.

4.2 Architecture Overview

Blockstack builds a naming system as a separate logi-
cal layer on top of the underlying blockchain. Block-
stack uses the underlying blockchain to achieve consen-

sus on the state of this naming system. It uses the un-
derlying blockchain as a communication channel for an-
nouncing state changes; any changes to the state of the
naming system can only be announced in new blockchain
blocks. Relying on the consensus protocol of the un-
derlying blockchain, Blockstack can give total ordering
for all operations (like register, update, and transfer) sup-
ported by the naming system.

Separation of Control and Data Plane: Blockstack
decouples security of name registration and name own-
ership from data availability of values associated with
names. This is done by separating the control and
data planes (Figure 4). The control plane is responsi-
ble for registering human-readable names and creating
(name,hash) bindings. It also defines the protocol for
establishing ownership of names, which are owned by
cryptographic keypairs. The control plane consists of a
cryptocurrency blockchain and a logically separate layer
on top, called a “virtual blockchain” (Section 4.3.2).

The data plane is responsible for data storage and
availability. It consists of (a) routes for discovering data,
and (b) external storage systems for storing data (such as
Amazon S3, IPFS [27], or Syndicate [28]). Data values
are signed by public keys of respective owners. The con-
trol plane retrieves data values from the data plane and
verifies their authenticity by checking either the hash of
the data or the signature of the public key.



We believe this separation is a significant improve-
ment over Namecoin, which implements both control
and data plane at the blockchain level. Our design not
only significantly increases the data storage capacity of
the naming system, but also allows each layer to evolve
and innovate independently of each other.

Agnostic of Underlying Blockchain: The design
of Blockstack does not put any limitations on which
cryptocurrency blockchain can be used with it. Any
blockchain can be used, but the security and reliabil-
ity properties are directly dependent on the underly-
ing blockchain. We believe that the ability to migrate
from one blockchain to another is an important design
choice as it allows for the larger system to survive, even
when the underlying blockchain is compromised. Cur-
rently, Blockstack core developers decide which under-
lying blockchain(s) to support in which version of the
software. Individual applications can decide to run the
software version of their choice and keep their names-
pace on a particular blockchain, if they prefer to not mi-
grate. Section 5 gives more details on the migration pro-
cess.

Ability to Construct State Machines: A key con-
tribution of Blockstack is the introduction of a logically
separate layer on top of a cryptocurrency blockchain that
can construct an arbitrary state machine after process-
ing information from the underlying blockchain. We call
this layer a virtual blockchain (Section 4.3.2). A vir-
tual blockchain treats transactions from the underlying
blockchain as inputs to the state machine. Valid inputs
trigger state changes. At any given time, where time is
defined by the block number, the state machine can give
exactly one global state. Time moves forward as new
blocks are written in the underlying blockchain and the
global state is updated accordingly.

Virtual blockchain can introduce new types of state
machines without requiring any changes from the un-
derlying blockchain. Introducing new state machines
directly in a blockchain requires, potentially consensus
breaking, upgrades of the cryptocurrency blockchain that
can cause forks and are hard to do in practice [13]. Cur-
rently, Blockstack introduces a state machine that repre-
sents the global state of a naming system i.e., who owns
a particular name, what data is associated with a name
etc. It’s possible to use the virtual blockchain concept to
define other types of state machines as well.

4.3 Blockstack Layers

Blockstack introduces new functionality on top of
blockchains by defining a set of new operations that
are otherwise not supported by the blockchain. Block-
stack has four layers, with two layers (cryptocurrency
blockchain and virtual blockchain) in the control plane

and two layers (routing and storage) in the data plane.

4.3.1 Layer 1: Cryptocurrency Blockchain

The blockchain occupies the lowest tier, and serves two
purposes: it stores the sequence of Blockstack oper-
ations, and provides consensus on the order in which
they were written. Blockstack operations are encoded
in transactions on the underlying blockchain.

4.3.2 Layer 2: Virtual Blockchain

Above the blockchain is a virtual blockchain, also called
virtualchain. The main advantage of virtualchains is
to introduce new functionality/operations without re-
quiring changes to the underlying blockchain. Only
Blockstack nodes are aware of this layer and underly-
ing blockchain nodes are agnostic to it. Blockstack op-
erations are defined in the virtualchain layer and are
encoded in valid blockchain transactions as additional
metadata. Blockchain nodes do see the raw transactions,
but the logic to process Blockstack operations only exists
at the virtualchain level.

The rules for accepting or rejecting Blockstack opera-
tions are also defined in the virtualchain. Accepted op-
erations are processed by the virtualchain to construct a
database that stores information on global state of the
system along with state changes at any given blockchain
block. Virtualchains can be used to build a variety of
state machines. Currently, Blockstack defines only a sin-
gle state machine; a global naming system.

4.3.3 Layer 3: Routing Layer

Blockstack separates the task of routing requests (i.e.,
how to discover data) from the actual storage of data.
This avoids the need for the system to adopt a single or
particular storage service from the onset, and instead al-
lows multiple storage providers to coexist and compete
for use (including both commercial services and peer-
peer systems).

The virtualchain binds names with respective
hash(route) and stores these bindings in the control
plane, where as the actual routes are stored in the
routing layer. Users do not need to trust the routing
layer, because the integrity of routes can be verified by
checking the hash(route) in the control plane.

In Blockstack’s current implementation, nodes form
a DHT-based peer network [33] for storing routes. The
DHT only stores routes if hash(route) was previously
announced in the blockchain and effectively white-lists
the data that can be stored in the DHT. Due to space
constraints, we omit most details of our DHT storage
from this paper; the key aspect relevant to the design of
Blockstack is that routes (no matter from where they are



fetched) can be verified and therefore cannot be tampered
with.

4.3.4 Layer 4: Storage Layer

The top-most layer is the storage layer, which hosts the
actual data values of name/value pairs. All stored data
values are signed by the key of the respective owner of a
name. By storing data values outside of the blockchain,
Blockstack allows values of arbitrary size, and allows
for a variety of storage backends. Users do not need
to trust the storage layer, because they can verify the
integrity of the data values in the control plane. There
are two modes of using the storage layer and they differ
in how the integrity of data values is verified; Blockstack
supports both storage modes simultaneously.

a) Mutable Storage is the default mode of opera-
tion for the storage layer. Bindings between name and
hash(route) are kept in the control plane and the rout-
ing layer is used to discover data values. Data in-
tegrity is verified by validating the signatures associated
with values. Mutable storage allows for faster writes,
since data updates do not involve any transactions on the
blockchain, which are slow. Updates to name/value pairs
do not involve the blockchain.

b) Immutable Storage by-passes the routing layer
and stores bindings between name and hash(data) in
the control plane, instead of bindings between name and
hash(route). Data integrity is verified by hashing the
data and comparing the result against the hash(data)
from the control plane. This mode is suitable for data
values that don’t change often and where it is important
to verify that you are viewing the latest version of the
data value. For immutable storage, updates to data values
require a new transaction on the underlying blockchain,
making data updates much slower than mutable storage.

4.4 Naming System

Blockstack uses the four-tiered system to implement a
complete naming system. Names are owned by cryp-
tocurrency addresses of the underlying blockchain and
the associated private keys e.g., ECDSA-based private
keys used in Bitcoin [13]. As with Namecoin, a user pre-
orders and then registers a name in two steps, in order
to claim a name without revealing it to the world first
(otherwise an attacker can race the user in claiming the
name). The first user to successfully write both a pre-
order and a register transaction owns the name. Any pre-
vious preorders become invalid when a name is regis-
tered. Once registered, a user can update the name/value
pair by sending a update transaction (which changes the
name/value binding) and uploading the new value to the
storage layer. Name transfer simply changes the cryp-
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Figure 5: States and Transitions for a Name.

tocurrency address that is allowed to sign subsequent
transactions revoke disables any further operations.

The naming system is implemented by defining a state
machine and rules for state transitions in the virtualchain.
Figure 5 shows the different states a name can be in
and how state transitions work. Names are organized
into namespaces. A namespace is the functional equiv-
alent of a top-level domain in DNS—it defines the cost
of names, and the name’s renewal rate. Like names, a
namespace must be preordered and then registered.

4.4.1 Pricing Functions for Namespaces

Anyone can create a namespace or register names in a
namespace, as there is no central party to stop someone
from doing so. Pricing functions define how expensive it
is to create a namespace or to register names in a names-
pace. Defining intelligent pricing functions is a way to
prevent “land grabs” and stop people from registering a
lot of namespaces/names that they don’t intend to actu-
ally use. Blockstack enables people to create namespaces
with sophisticated pricing functions. For example, we
use the .id namespace for our PKI system and created the
.id namespace with a pricing function where (a) the price
of a name drops with an increase in name length and (b)
introducing non-alphabet characters in names also drops
the price. With this pricing function, price of john.id >
johnadam.id > john0001.id. The function is generally
inspired by the observation that short names with all-
alphabets are considered more desirable on namespaces
like Twitter. It’s possible to create namespaces where
name registrations are free as well. Further, we expect
that in the future there can be a reseller market for names,
just like DNS. A detailed discussion of pricing functions
is out of the scope of this paper and the reader is encour-
aged to see [29] for more details on pricing functions.



4.5 Simple Name Verification
Blockstack nodes can independently calculate a consen-
sus hash at any blockchain block. Consensus hashes help
Blockstack nodes figure out if they have the same view
of the global state at any given block. Each consensus
hash CH(h) is constructed from block h’s sequence of
virtualchain operations Vh, as well a geometric series of
prior consensus hashes Ph defined by:

CH(h) = hash(Vh +Ph)

where,

Ph = {CH(h−2i)|i ∈ N,h−2i >= h0}
and h0 is the first block. Other than detecting that two

Blockstack nodes have the same global view, consensus
hashes also address the endless ledger problem (defined
in Section 4.1). As the underlying blockchain grows in
size, new Blockstack nodes need to process more and
more blocks before they bootup.

A new Blockstack node can bootstrap by using an un-
trusted database of state information at a given block
number, combined with a trusted consensus hash CH(h)
of the same block number. The block number is also
termed the block height in the literature, and it increases
with each new block. A new Blockstack node can recon-
struct the virtual blockchain from the untrusted database
and reprocess virtualchain operations at each blockchain
block. The new node can also calculate CH(h) at each
blockchain block. If the final consensus hash matches the
trusted consensus hash at hn, then the database associated
with hn is trustworthy and the node can start processing
blocks after hn. This is much faster than the traditional
approach of starting from the first block h0 and fetching
all transaction even though most will be discarded.

The process of verifying the authenticity of a prior
name operation with a later trusted consensus hash is
called Simplified Name Verification (SNV). SNV enables
support for “thin clients”, who can query the past state
of the system without running Blockstack nodes or hav-
ing access to the full blockchain history. Support for thin
clients is important for users on mobile devices.

As such, if a user trusts that CH(h) is authentic, then
she can query and verify the virtualchain operations Vh
and previous consensus hash Ph for block h. The con-
struction of CH(h) allows a user to verify the authentic-
ity of any virtualchain operation from a block with height
hprior < h, using only a logarithmic number of queries.
Figure 6 shows an example SNV query. Each row rep-
resents the blockchain, in decreasing block height order
from left to right (h > h0). The user wishes to verify
the authenticity of a name operation in a target block
(marked with a ?). In each step, the user recursively trusts
the consensus hash for the white outlined blocks.

Figure 6: Overview of SNV. Example SNV query.

On current commodity hardware, booting new Block-
stack nodes can take 1-2 hours with SNV, compared to 2-
4 days without SNV. Further engineering improvements
in our Python implementation are currently possible.

5 Lessons from Migration to Bitcoin

We implemented Blockstack in 40,344 lines of Python
code [12] and the current implementation uses Bitcoin
as the underlying blockchain. In September 2015, we
completed migration of 33,000 users of our production
PKI system [39], from Namecoin to Blockstack/Bitcoin.
These users were migrated from the u/ namepsace on
Namecoin to the .id namespace on Blockstack.

Blockstack embeds additional data in Bitcoin trans-
actions using special fields dedicated for including ar-
bitrary data [11]. Embedding additional data in Bitcoin
transactions is already becoming a popular way to define
higher-level protocols on top of Bitcoin, like Counter-
party [18], Open Assets [40], etc. Figure 7 shows re-
cent bandwidth usage of data-embedding protocols, like
Blockstack, on the Bitcoin blockchain. The spike of
10,000+ transactions, near block 375000, was during
our migration to Bitcoin. Our production system [39]
currently accounts for most of Blockstack transactions,
which is 24.4% of all data-embedding transactions ever
made on Bitcoin [41]. Below are some observations we
made while working with the Bitcoin network:
• Network Throughput: The Bitcoin developers and

community is currently going through a (heated) de-
bate about increasing the blocksize limit from 1MB to
8MB [48]. Bitcoin currently supports roughly 7 trans-
actions per second with a 1MB block size. We noticed
these limitations first hand when we throttled our trans-
actions to not exceed 20-30% of Bitcoin blocks, signif-
icantly increasing the amount of time it took for com-
pleting registrations. When scaling to millions of users,
instead of thousands, even 8MB blocks will not suffice



Figure 7: Data-embedding transactions on Bitcoin are
already becoming a frequent use case.

and the community needs to look into side chains [9]
and novel methods for packing multiple transactions in
one (area of future work for us).
• Network Attacks: During our migration to Bit-

coin, a UK based company CoinWallet was performing
a stress test on the Bitcoin network [15]. The stress test
included a high-volume of small transactions which were
too small for miners to package in a block. This resulted
in extremely high number of unconfirmed transactions
on the network and we ended up paying 2-3 times higher
transaction fees to get our transactions packaged by min-
ers. This experience shows how a single actor can force
high mining fees on the rest of the network (although in
this case there was a cost factor attached to the attack).
We believe that networking attacks, like the one we expe-
rienced or other DDoS attacks [34], are likely to become
more frequent as the Bitcoin network is used for more
mainstream services. Protections against such attacks is
an important area of future research.

6 Related Work

Binding names to values in naming systems is a well-
explored problem space. UIA [22] gives a great overview
of global naming systems and their importance. Unlike
Namecoin [37] or Blockstack, UIA doesn’t try to pro-
vide globally unique names. We encourage the reader
to UIA [22] for a detailed background on naming sys-
tems. In authentication systems like InCommon [25],
OpenID [43], and the Web’s certificate authorities, a fed-
eration of authorities attests to bindings. Blockstack does
not require a federation.

Other than Namecoin, blockchains like Ethereum [6]
and BitShares [4] also have support for namespaces.
Further, sidechains [9] enable implementation of nam-

ing systems as an alternate blockchain that is linked
to the main Bitcoin blockchain. All these designs in-
volve smaller, alternate blockchains and Blockstack im-
plements a naming system directly on top of the Bitcoin.

In networked systems it’s hard to get global state
without involving central/trusted parties [31], Blockstack
is able to give global state (and not just approximate
global state). Our system is open (“permissionless”),
whereas existing wide-area systems like OceanStore [19]
and Bonafide [14] have a closed (“permissioned”) set
of peers that use BFT agreement to make progress for
the whole system. Blockstack differs from decentralized
storage systems which allow open membership but offer
stronger-than-eventual data consistency (like Shark [8],
Pond [44], and Scatter [23]) by focus on decentraliza-
tion while supporting a wide variety of external datas-
tores that give strong consistency.

Storage-oriented cryptocurrencies like Filecoin [21],
Permacoin [36], and Storj [46] seek to replace cloud stor-
age by distributing files as sets of transactions within a
blockchain, and rewarding miners for proof-of-storage
(instead of proof-of-work). Blockstack differs from these
systems by decoupling hosting data from operations of
the underlying cryptocurrency blockchain, allowing de-
velopers to use storage systems appropriate for their
problem domains. Blockstack currently uses a simple
Kademlia [33] based DHT as discovery layer, but other
protocols like Chord [47] or caching optimizations like
Beehive [42] are possible.

7 Conclusion

Our experience with running a production network on
Namecoin, one of the oldest and largest cryptocurrency
blockchains other than Bitcoin, shows how a single
miner consistently had more than 51% hashing power
and how network reliability was far inferior to Bitcoin.
Our data shows that out of the hundreds of blockchains
currently in use [5] even the more stable and more pop-
ular blockchains like Namecoin are not suitable for pro-
duction use. Currently, the security of Bitcoin far out
weights other blockchains.

We have presented Blockstack, a blockchain-based
naming system that separates control and data planes and
enables the ability to introduce new functionality with-
out modifying the underlying blockchain. The design of
Blockstack was informed by a year of production expe-
rience from one of the largest blockchain-based systems.
We’ve made several improvements (faster bootstrap-
ping of new nodes, keeping data updates off the slow
blockchain network, etc.) that make it easier to build de-
centralized services using publicly-available infrastruc-
ture. We’ve released Blockstack as open-source [12].
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